网站首页 > 技术文章 正文
GraphRag原理
通过利用大模型的能力,将普通的文本文档转成结构化的知识图谱。问答生成的时候将结构化的知识图谱和非结构化的文本数据结合,作为问答上下文提供给大模型总结回答。
部署
Python版本要求:Python 3.10-3.12
安装GraphRAG,可能需要外网环境,否则有些依赖下不到。
pip install graphrag
创建rag索引目录
mkdir -p ./ragtest/input
下载demo文本文档
curl https://www.gutenberg.org/cache/epub/24022/pg24022.txt > ./ragtest/input/book.txt
初始化工作空间
python -m graphrag.index --init --root ./ragtest
初始化完成之后,会产生如下目录
构建索引
下面分两种情况。用云上的模型或者本地部署模型
第一种用云上的模型(OpenAI或者Azure OpenAI)
在官方介绍种称只支持这两种模型。
到OpenAI上生成自己的API KEY,配置到.env文件中。
大模型默认用的是收费模型:gpt-4-turbo-preview,需要付费和开通。
这里可以换成免费的3.5模型,比如gpt-3.5-turbo。
运行索引构建流水线
python -m graphrag.index --root ./ragtest
如果大模型用的是gpt-4o或者gpt-4-turbo-preview,应该会正常执行成功(没试过),或者微软的Azure OpenAI。
如果换成免费的gpt3.5,则会报错,因为构建索引token消耗很大,会超限,导致构建失败。
运行之后,会在output目录下产生一个时间戳的文件夹,里面有此次运行的日志文件,如果报错可以在indexing-engine.log文件中查看日志。
第二种本地部署模型
模型部署
大模型:gemma2,文本嵌入模型:
nomic-embed-text-v1.5-GGUF
gemma2用ollama部署运行:
ollama run gemma2
nomic嵌入模型需用LM Studio运行,用ollama跑会报错。
配置文件
env文件
GRAPHRAG_API_KEY=ollama
settings.yaml文件
encoding_model: cl100k_base
skip_workflows: []
llm:
api_key: ollama
type: openai_chat # or azure_openai_chat
model: gemma2:latest
model_supports_json: true # recommended if this is available for your model.
# max_tokens: 4000
# request_timeout: 180.0
# 改成ollama部署机器的ip和端口
api_base: http://XXX.XXX.XXX.XXX:8000/v1
# api_version: 2024-02-15-preview
# organization: <organization_id>
# deployment_name: <azure_model_deployment_name>
# tokens_per_minute: 150_000 # set a leaky bucket throttle
# requests_per_minute: 10_000 # set a leaky bucket throttle
# max_retries: 10
# max_retry_wait: 10.0
# sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times
# concurrent_requests: 25 # the number of parallel inflight requests that may be made
parallelization:
stagger: 0.3
# num_threads: 50 # the number of threads to use for parallel processing
async_mode: threaded # or asyncio
embeddings:
## parallelization: override the global parallelization settings for embeddings
async_mode: threaded # or asyncio
llm:
api_key: lm-studio
type: openai_embedding # or azure_openai_embedding
model: nomic-ai/nomic-embed-text-v1.5-GGUF/nomic-embed-text-v1.5.Q5_K_M.gguf
# 改成LM Studio部署机器的ip和端口
api_base: http://localhost:1234/v1
# api_version: 2024-02-15-preview
# organization: <organization_id>
# deployment_name: <azure_model_deployment_name>
# tokens_per_minute: 150_000 # set a leaky bucket throttle
# requests_per_minute: 10_000 # set a leaky bucket throttle
# max_retries: 10
# max_retry_wait: 10.0
# sleep_on_rate_limit_recommendation: true # whether to sleep when azure suggests wait-times
# concurrent_requests: 25 # the number of parallel inflight requests that may be made
# batch_size: 16 # the number of documents to send in a single request
# batch_max_tokens: 8191 # the maximum number of tokens to send in a single request
# target: required # or optional
chunks:
size: 300
overlap: 100
group_by_columns: [id] # by default, we don't allow chunks to cross documents
input:
type: file # or blob
file_type: text # or csv
base_dir: "input"
file_encoding: utf-8
file_pattern: ".*\\.txt#34;
cache:
type: file # or blob
base_dir: "cache"
# connection_string: <azure_blob_storage_connection_string>
# container_name: <azure_blob_storage_container_name>
storage:
type: file # or blob
base_dir: "output/${timestamp}/artifacts"
# connection_string: <azure_blob_storage_connection_string>
# container_name: <azure_blob_storage_container_name>
reporting:
type: file # or console, blob
base_dir: "output/${timestamp}/reports"
# connection_string: <azure_blob_storage_connection_string>
# container_name: <azure_blob_storage_container_name>
entity_extraction:
## llm: override the global llm settings for this task
## parallelization: override the global parallelization settings for this task
## async_mode: override the global async_mode settings for this task
prompt: "prompts/entity_extraction.txt"
entity_types: [organization,person,geo,event]
max_gleanings: 0
summarize_descriptions:
## llm: override the global llm settings for this task
## parallelization: override the global parallelization settings for this task
## async_mode: override the global async_mode settings for this task
prompt: "prompts/summarize_descriptions.txt"
max_length: 500
claim_extraction:
## llm: override the global llm settings for this task
## parallelization: override the global parallelization settings for this task
## async_mode: override the global async_mode settings for this task
# enabled: true
prompt: "prompts/claim_extraction.txt"
description: "Any claims or facts that could be relevant to information discovery."
max_gleanings: 0
community_report:
## llm: override the global llm settings for this task
## parallelization: override the global parallelization settings for this task
## async_mode: override the global async_mode settings for this task
prompt: "prompts/community_report.txt"
max_length: 2000
max_input_length: 8000
cluster_graph:
max_cluster_size: 10
embed_graph:
enabled: false # if true, will generate node2vec embeddings for nodes
# num_walks: 10
# walk_length: 40
# window_size: 2
# iterations: 3
# random_seed: 597832
umap:
enabled: false # if true, will generate UMAP embeddings for nodes
snapshots:
graphml: false
raw_entities: false
top_level_nodes: false
local_search:
# text_unit_prop: 0.5
# community_prop: 0.1
# conversation_history_max_turns: 5
# top_k_mapped_entities: 10
# top_k_relationships: 10
# max_tokens: 12000
global_search:
# max_tokens: 12000
# data_max_tokens: 12000
# map_max_tokens: 1000
# reduce_max_tokens: 2000
# concurrency: 32
运行索引构建流水线
python -m graphrag.index --root ./ragtest
ollama部署在4090显卡的那台机器,
nomic-embed-text-v1.5-GGUF部署本地电脑4G显存。
索引构建非常慢,以小时计。
问答
python -m graphrag.query \
--root ./ragtest \
--method global \
"show me some Prompts about Interpretable Soft Prompts."
生成的知识图谱文件(以凡人修仙传为原始文本生成的)
GraphRAG与普通RAG的对比
中文文档问答效果测试
生成的知识图谱导入Neo4j可视化之后的数据
http://localhost:7474/browser/
- 上一篇: 如何反向绘制出 .NET程序 异步方法调用栈
- 下一篇: 短视频宝贝=慢?阿里巴巴工程师这样秒开短视频
猜你喜欢
- 2025-06-07 Tomcat服务器的部署与优化:从入门到精通
- 2025-06-07 连接池之HikariCP:HikariCP框架设计与功能使用分析(第一部分)
- 2025-06-07 一次完整的HTTP请求与响应涉及了哪些知识?
- 2025-06-07 Excel常用技能分享与探讨(5-宏与VBA简介 VBA之用户窗体-一)
- 2025-06-07 编程英文 - 配置/设置/初始化 (configure/setup/initialize)
- 2025-06-07 Qt/C++编写音视频实时通话/画中画/设备热插拔/本地摄像头和桌面
- 2025-06-07 基于c++的数据库连接池的实现与理解
- 2025-06-07 如何优化一个秒杀项目?
- 2025-06-07 数据库连接池提前初始化引发的异常
- 2025-06-07 Seata源码—6.Seata AT模式的数据源代理一
- 最近发表
- 标签列表
-
- axure 注册码 (25)
- exploit db (21)
- mutex_lock (30)
- oracleclient (27)
- think in java (14)
- javascript权威指南 (19)
- nfs (25)
- componentart (17)
- yii框架 (14)
- springbatch (28)
- oracle数据库备份 (25)
- iptables (21)
- 自动化单元测试 (18)
- python编写软件 (14)
- dir (26)
- connectionstring属性尚未初始化 (23)
- output (32)
- panel滚动条 (28)
- centos 5 4 (23)
- sql学习 (33)
- dfn (14)
- http error 503 (21)
- pop3服务器 (18)
- 图表组件 (17)
- android退出应用 (21)